Abstract
This paper proposes an effective approach for predicting quality of life (QoL) for dependent individuals in guardianship entities. In addition, it aims to improve the QoL of people with intellectual disabilities. The proposed QoL prediction approach employs machine learning (ML) techniques to model the relationship between eight aspects of QoL and the corresponding QoL index. It determines whether or not a person needs assistance based on the index value. The proposed approach determines the priority of care (PoC) value for each aspect of a person. Based on PoC, the deficit aspect is determined, followed by the type of assistance a person requires, based on the decision priorities. It also generates a support report with suggested actions to highlight the level in that aspect. In addition, we train multiple ML models to predict the standard score (SS), which represents the support value related to the eight aspects of QoL. Finally, we use SS values to train an ML model to predict the support intensity scale (SIS). On a dataset compiled from guardianship entities, the proposed approach is validated. The QoL index, SS, and SIS prediction models achieve average R2 values of 0.9897, 0.9998, and 0.9977 with a standard deviation of 0.0051, 0.0002, and 0.0007, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.