Abstract

We consider the random walk on a lattice with random transition rates and arbitrarily long-range jumps. We employ Bruggeman's effective-medium approximation (EMA) to find the disorder-averaged (coarse-grained) dynamics. The EMA procedure replaces the disordered system with a cleverly guessed reference system in a self-consistent manner. We give necessary conditions on the reference system and discuss possible physical mechanisms of anomalous diffusion. In the case of a power-law scaling between transition rates and distance, lattice variants of Lévy-flights emerge as the effective medium, and the problem is solved analytically, bearing the effective anomalous diffusivity. Finally, we discuss several example distributions and demonstrate very good agreement with numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.