Abstract
Band structure is theoretically studied in partially flattened carbon nanotubes within an effective-mass scheme. Effects of interwall interactions are shown to be important in nonchiral nanotubes such as zigzag and armchair and can essentially be neglected in chiral nanotubes except in the close vicinity of nonchiral tubes. In fact, interwall interactions significantly modify states depending on relative displacement in the flattened region in nonchiral tubes and can convert semiconducting tubes into metallic and vice versa. They diminish rapidly when the chiral angle deviates from that of the zigzag or armchair tube, although the decay is slower in the vicinity of armchair tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.