Abstract
The effective gravitational mass as well as the energy and momentum distributions of a radiating charged particle in Einstein's universe are evaluated. The Møller's energy–momentum complex is employed for this computation. The spacetime under study is a generalization of Bonnor and Vaidya spacetime in the sense that the metric is described in the cosmological background of Einstein's universe in lieu of the flat background. Several spacetimes are limiting cases of the one considered here. In particular for the Reissner–Nordström black hole background, our results are exactly the same as those derived by Cohen and Gautreau using Whittaker's theorem and by Cohen and de Felice using Komar's mass. Furthermore, the power output for the spacetime under consideration is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.