Abstract
III‐nitride wide bandgap semiconductors are favorable materials for developing room temperature spintronic devices. The effective manipulation of spin dynamics is a critical request to realize spin field‐effect transistor (FET). In this work, the dependence of the spin relaxation time on external strain‐induced polarization electric field is investigated in InGaN/GaN multiple quantum wells (MQWs) by time‐resolved Kerr rotation spectroscopy. Owing to the almost canceled two different spin–orbit coupling (SOC), the spin relaxation time as long as 311 ps in the MQWs is obtained at room temperature, being much longer than that in bulk GaN. Furthermore, upon applying an external uniaxial strain, the spin relaxation time decreases sensitively, which originates from the breaking of the SU(2) symmetry. The extracted ratio of the SOC coefficients shows a linear dependence on the external strain, confirming the essential role of the polarization electric field. This effective manipulation of the spin relaxation time sheds light on GaN‐based nonballistic spin FET working at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.