Abstract
Mammogram classification is a crucial and challenging problem, because it helps in early diagnosis of breast cancer and supports radiologists in their decision to analyze similar mammograms out of a database by recognizing the classes of current mammograms. This paper proposes an effective method for classifying mammograms using random forests with wavelet based center-symmetric local binary pattern (WCS-LBP). To classify mammograms, multi-resolution CS-LBP texture characteristics from non-overlapping regions of the mammograms are captured. Further, we examine most relevant features using support vector machine-recursive feature elimination (SVM-RFE). Finally, we feed the selected features to decision trees and construct random forests which are an ensemble of random decision trees. Using wavelet based local CS-LBP features with random forest, we classify the test images into different categories having the maximum posterior probability. The proposed method shows the improved performance as compared with other variant features and state-of-art methods. The obtained performance measures are 97.3% accuracy, 97.3% precision, 97.2% recall, 97.2% F-measure and 94.1% Matthews correlation coefficient (MCC).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.