Abstract

The closed, spatially isotropic FLRW universe (k=+1) is endowed with modifications due to a discrete underlying space-structure. Motivated from Loop Quantum Gravity techniques, a full Thiemann regularisation is performed. The impact of these modifications of the single-graph-sector appearing in the scalar constraint are interpreted as physical quantum gravity effects. We investigate the form of the modified scalar constraint and its analytical approximations for k=+1 spacetimes and assume this effective constraint as the generator of dynamics on the reduced isotropic phase space. It transpires that the system still features a classical recollapse with only marginal discreteness corrections. Moreover, the initial and final singularities are resolved and we present an effective model mirroring the qualitative features of system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.