Abstract

In this paper, we work with 16 different single scalar particle extensions of the Standard Model. We present the sets of dimension-six effective operators and the associated Wilson coefficients as functions of model parameters after integrating out the heavy scalars up to one loop, including the heavy-light mixing, for each such scenario. Using the correspondence between the effective operators and the observables at the electroweak scale, and employing Bayesian statistics, we compute the allowed ranges of new physics parameters that are further translated and depicted in two-dimensional Wilson coefficient space in light of the latest CMS and ATLAS data up to 137 and $139\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$, respectively. We also adjudge the status of those new physics extensions that offer similar sets of relevant effective operators. In addition, we provide a model-independent fit of 23 Standard Model effective field theory Wilson coefficients using electroweak precision observables, single- and di-Higgs data, as well as kinematic distributions of diboson production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call