Abstract

Relative to body size, smaller animals use more energy to travel a given distance than larger animals, but the anatomical variable driving this negative allometry remains the subject of debate. Here, I report a simple inverse relationship between effective limb length (i.e. hip height) and the energy cost of transport (COT; J kg(-1) m(-1)) for terrestrial animals. Using published data for a diverse set of terrestrial species including birds, mammals, reptiles and arthropods, I show that between-species differences in locomotor cost are driven by differences in limb length. Notably, there is no independent effect of body mass on cost. Remarkably, effective limb length explains 98% of the observed variance in locomotor cost across a wide range of terrestrial species including mammals, birds, reptiles and arthropods. Variation about the limb-length/COT scaling relationship is attributable to taxonomic differences in limb design, with birds and arthropods exhibiting greater residuals than mammals. Differences in COT between semi-aquatic, generalist and cursorial species also corresponds to differences in leg length between these groups. These results are discussed in light of previous investigations of the limb length and locomotor cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.