Abstract
An effective large-scale model of interacting boson gas at low temperatures is constructed from first principles. The starting point is the generating function of time-dependent Green functions at finite temperature. The perturbation expansion is worked out for the generic case of finite time interval and grand-canonical density operator with the use of the S-matrix functional for the generating function. Apparent infrared divergences of the perturbation expansion are pointed out. Regularization via attenuation of propagators is proposed and the relation to physical dissipation is studied. Problems of functional-integral representation of Green functions are analyzed. The proposed large-scale model is explicitly renormalized at the leading order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.