Abstract

The structure of the low-lying states of58Ni has been calculated in shell model by assuming an inert56Ni core plus two valence nucleons in the p3/2, f5/2 and p1/2 orbitals. The two-body matrix elements are first expressed in terms of seven radial matrix elements and these are then parametrized to give best fit between the computed and the observed energies of the levels below 4 MeV. The wave-functions obtained using these two-body matrix elements are used to study the concept of effective charges. It is found that a single effective charge is not sufficient to predict theB(E2) rates equally well for the thirteen known transitions for which experimental values are available. Assumption of state-dependent effective charges gives a far better agreement. An analysis using wavefunctions obtained with Kuo’s two-body matrix elements also gives a similar result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call