Abstract
The collinear magnetostatic wave - optical wave interaction is considered. Emphasis is placed on the effect of magnetostatic and optical losses on the conversion efficiency between optical modes and on the interaction bandwidth. It is found that the introduction of an effective interaction length provides a straightforward refinement of existing theory applicable to situations with small total energy transfer between optical modes. A weak-coupling model for the interaction bandwidth in the presence of loss is also described. The utility of the model is tested by comparing experimentally obtained interaction bandwidths against theoretical predictions, at center frequencies between 0.5 and 12 GHz. Taking optical and magnetostatic wave losses into account in the theory results in a significant improvement over lossless coupled-mode theory. Some experimental techniques and applications with magnetostatic waves are illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.