Abstract

BackgroundFoot-and-mouth disease virus (FMDV) causes an economically important and highly contagious disease of cloven-hoofed animals. RNAi triggered by small RNA molecules, including siRNAs and miRNAs, offers a new approach for controlling viral infections. There is no report available for FMDV inhibition by vector-delivered miRNA, although miRNA is believed to have more potential than siRNA. In this study, the inhibitory effects of vector-delivered miRNAs targeting the 3D gene on FMDV replication were examined.ResultsFour pairs of oligonucleotides encoding 3D-specific miRNA of FMDV were designed and selected for construction of miRNA expression plasmids. In the reporter assays, two of four miRNA expression plasmids were able to significantly silence the expression of 3D-GFP fusion proteins from the reporter plasmid, p3D-GFP, which was cotransfected with each miRNA expression plasmid. After detecting the silencing effects of the reporter genes, the inhibitory effects of FMDV replication were determined in the miRNA expression plasmid-transfected and FMDV-infected cells. Virus titration and real-time RT-PCR assays showed that the p3D715-miR and p3D983-miR plasmids were able to potently inhibit the replication of FMDV when BHK-21 cells were infected with FMDV.ConclusionOur results indicated that vector-delivered miRNAs targeting the 3D gene efficiently inhibits FMDV replication in vitro. This finding provides evidence that miRNAs could be used as a potential tool against FMDV infection.

Highlights

  • Foot-and-mouth disease virus (FMDV) causes an economically important and highly contagious disease of cloven-hoofed animals

  • In order to explore a new approach to inhibit FMDV, here we report on vectordelivered miRNA molecules that were studied for their inhibitory effects on FMDV replication

  • Identification of miRNA-expression plasmids and reporter plasmid The pre-miRNA oligonucleotides were cloned into vector pcDNA6.2-GW-miR as recommended by the manufacturer’s protocol, resulting in four 3D-specific miRNA expression plasmids (p3D657-miR, p3D715-miR, p3D983-miR, and p3D1311-miR) and a negative control miRNA expression plasmid

Read more

Summary

Introduction

Foot-and-mouth disease virus (FMDV) causes an economically important and highly contagious disease of cloven-hoofed animals. RNAi triggered by small RNA molecules, including siRNAs and miRNAs, offers a new approach for controlling viral infections. The inhibitory effects of vector-delivered miRNAs targeting the 3D gene on FMDV replication were examined. The cellular complex Dicer cleaves a dsRNA molecule to generate discrete 21-23 nt small interfering RNAs (siRNAs) or microRNAs (miRNAs), which guide the RNAi-induced silencing complex (RISC) to cleave the target mRNAs [8,9,10]. In order to explore a new approach to inhibit FMDV, here we report on vectordelivered miRNA molecules that were studied for their inhibitory effects on FMDV replication. This study provides an experimental basis for the development of a new anti-FMDV strategy, and for a new approach to study FMDV infection and replication

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.