Abstract

Microcystis aeruginosa is one of the most famous harmful algae. In this work, Z-scheme g-C3N4-MoO3 (Mo-CN) composite photocatalysts were successfully synthesized to alleviate the algae pollution. The obtained composites exhibited excellent performance for the inactivation of M. aeruginosa. The optimal photocatalysts (15Mo-CN) achieved a removal efficiency of 97% for the algal cells after 3 h visible light irradiation, which was attributed to their remarkable surface properties and ingenious structure design. The physiological status of Microcystis aeruginosa were evaluated by the chlorophyll a (chla), relative electron transport rate (rETR) and maximum photochemical efficiency (Fv/Fm), and all of them decreased in different degrees. Furthermore, the as-prepared photocatalysts also show a certain activity for the removal of leaked macromolecule organic compounds during the process of algal cells inactivation. Finally, a possible mechanism on the photocatalytic inactivation of algal cells by the Z-scheme photocatalysts was deduced based on the experimental and characterization results. We believe this study would provide new insights into the development of promising technology and basic theory for remediation of algae pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.