Abstract
This study demonstrates a nucleophile-catalyzed, trimethylsilyl halide-promoted rearrangement reaction of glycidol acetals to form halogenated cyclic acetals. The acetal group has been activated selectively in the presence of trimethylsilyl cation, which is used as in situ-generated alkoxide trapping reagent. Nucleophilic chloride and bromide ions participate in addition reactions with epoxides predominantly via SN1-type epoxide opening, while non-nucleophilic iodide and triflate ions induce a positive charge at the epoxide carbon. A systematic investigation of acetal-initiated polyene cyclization of epoxy polyenes has been conducted using bicyclic epoxonium ions as transient intermediates. Unfavorable orbital orientation and other stereoelectronic factors hinder the much-anticipated polyene cyclizations. The potential of this method has been showcased through its application in the total synthesis of parvistone A, a chlorinated styryllactone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.