Abstract

The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400–500 nm) contributed to a significant improvement in performance of the STN backbones and infiltrated electrodes. The improvement is due to the result of CGO enrichment at the interface. The impedance analysis showed that addition of Pd further increased the electrode reaction rate with a factor 10 with respect to the CGO electrocatalysts. Very low electrode polarization resistances of 0.055 Ω cm2 (after excluding the gas diffusion limitation contribution) and 1.2 Ω cm2 at 600 °C and 400 °C, respectively, have been obtained in 3% H2/H2O. A gradual decrease in polarization resistance was achieved with increasing loading of Pd-CGO electrocatalyst. The microstructural analysis of the infiltrated Pd-CGO electrocatalyst on STN revealed a homogenous coating of Pd and CGO nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.