Abstract

In this study, nano α-FeOOH (nFeOOH, 100–500 nm) was coated onto activated carbon (nFeOOH@AC) through a dipping means for enhanced Cr(VI) immobilization from drinking water. The nFeOOH@AC significantly improved the Cr(VI) removal from 19.9% (AC control) to 93.4%. XPS spectra and chromium speciation demonstrated that about 90% of adsorbed Cr(VI) was converted to Cr(III) by the nFeOOH@AC, accompanying with a reduction-oxidation of Fe3+/Fe2+ in the nFeOOH matrix due to electrons delivering between AC and surface-bound Cr(VI). The resultant Cr(III) subsequently reacted with Fe(III) to generate stable (CrχFe1-χ)(OH)3 precipitates, leading to a much lower Cr(III) release of 7.5% back to solution by the nFeOOH@AC as compared to the AC control of 33.8%, indicating that the nFeOOH@AC had a prospective potential for Cr(VI) immobilization and decreased Cr residue in treated drinking water. Results from column experiment also showed that the nFeOOH@AC afforded a 3.5 times higher capacity for Cr(VI) immobilization and a 3.4 times longer life-span than the pristine AC. Besides, Cr(VI) immobilization by the nFeOOH@AC was a pH-dependent process and the adsorbed Cr on the nFeOOH@AC could be readily desorbed with acetic acid. The disabled nFeOOH@AC could be refreshed by recoating nFeOOH particles with the above dipping method after stripping all the iron oxides with hydrochloric acid. This study demonstrated that nFeOOH coating is an efficient approach to enhance Cr(VI) elimination by AC during drinking water treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.