Abstract
Distributed permutation flowshop scheduling problem (DPFSP) has become a very active research area in recent years. However, minimizing total flowtime in DPFSP, a very relevant and meaningful objective for today's dynamic manufacturing environment, has not captured much attention so far. In this paper, we address the DPFSP with total flowtime criterion. To suit the needs of different CPU time demands and solution quality, we present three constructive heuristics and four metaheuristics. The constructive heuristics are based on the well-known LR and NEH heuristics. The metaheuristics are based on the high-performing frameworks of discrete artificial bee colony, scatter search, iterated local search, and iterated greedy, which have been applied with great success to closely related scheduling problems. We explore the problem-specific knowledge and accelerations to evaluate neighboring solutions for the considered problem. We introduce advanced and effective technologies like a referenced local search, a strategy to escape from local optima, and an enhanced intensive search method for the presented metaheuristics. A comprehensive computational campaign against the closely related and well performing algorithms in the literature is carried out. The results show that both the presented constructive heuristics and metaheuristics are very effective for solving the DPFSP with total flowtime criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.