Abstract
Advances in harmful organism management are highly demanding due to the toxicity of conventional coating approaches. Exploiting biomimetic superhydrophobicity could be a promising alternative on account of its cost-effectiveness and eco-friendliness. Here, we introduce a facile method to fabricate a robust superhydrophobic coating on a fabric substrate. This is achieved by sequentially spraying TiO2-epoxy resin nanocomposite material and fluorocarbon-silane modified SiO2 nanoparticles (FC-silane SiO2 NPs). The superhydrophobicity is attributed to the nanoparticles constituting a micro/nano hierarchical structure and the fluorocarbon of the modified SiO2 NPs lowering the surface energy. The epoxy resin embedded in the coating layer plays an important role in improving the robustness. The robustness of the superhydrophobic surface is demonstrated by measuring the water slide angle of surfaces that are subject to salty water at 500 rpm stirring condition for up to 13 days. This study focuses on ensuring the superhydrophobicity and robustness of the coating surface, which is preliminary work for the practical management of macrofoulers. Based on this work, we will perform practical harmful organism management in seawater as a second research subject.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Sustainability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.