Abstract

What is the zero-temperature ordering pattern of a Heisenberg antiferromagnet with large spin length $S$ (and possibly small dilution), on the kagome lattice, or others built from corner-sharing triangles and tetrahedra? First, I summarize the uses of effective Hamiltonians to resolve the large ground-state degeneracy, leading to long-range order of the usual kind. Secondly, I discuss the effects of dilution, in particular to {\it non}-frustration of classical ground states, in that every simplex of spins is optimally satisfied. Of three explanations for this, the most complete is Moessner-Chalker constraint-counting. Quantum zero-point energy may compete with classical exchange energy in a diluted system, creating frustration and enabling a spin-glass state. I suggest that the regime of over 97% occupation is qualitatively different from the more strongly diluted regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call