Abstract
The magnetic field opens a gap in the edge state spectrum of two-dimensional topological insulators, thereby destroying the protection of these states against backscattering. To relate properties of this gap to parameters of the system and to study the dynamics of electrons in edge states in the presence of inhomogeneous potentials, the effective Hamiltonian theory is developed. Using this analytical theory, the quantum-mechanical problems of edge-state electron transmission through potential steps and barriers and of motion in a constant electric field are considered. The influence of a magnetic field on the resistance of two-dimensional topological insulators based on HgTe quantum wells is discussed together with comparison to experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.