Abstract

Background aimsAdipose-derived stem cells have the ability to turn into several clinically important cell types. However, it is difficult to transfect these cells with the use of conventional cationic lipid-based reagents. Polyethylenimine (PEI) is considered to be an inexpensive and effective tool for delivery of nucleic acids into mammalian cells. MethodsWe used a linear PEI conjugated with the nuclear localization signal (NLS) peptide of Simian vacuolating virus 40 large T antigen (PEI-NLS) for transfection of plasmid DNA into adipose-derived cells. We also tested if transfection of cells in suspension might improve the degree and duration of exogenous gene expression. ResultsTransfection of cells in suspension with the use of a PEI conjugated with an NLS peptide resulted in high levels of reporter gene expression for an extended period of time in clonal 3T3-L1 preadipocytes and native human adipose-derived stem cells. The reporter gene expression increased for 3 days after the addition of the PEI-NLS peptide–DNA mixture in cell suspension and remained significant for at least 7 days. Cell density did not influence the level of reporter gene expression. Thus, the suspension method with the use of an NLS peptide–conjugated PEI leads to a robust and sustained expression of exogenous genes in adipose-derived cells. ConclusionsThe devised transfection method may be useful for reprogramming of adipose-derived stem cells and cell-based therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.