Abstract

Closed Green-function expressions for the third-order response of semiconductors are derived by mapping the two-band model onto the much simpler molecular (Frenkel) Hamiltonian. The signatures of two-exciton resonances are incorporated through the exciton scattering matrix, totally avoiding the explicit calculation of two-exciton states. Exact expressions for the nonlinear optical response of two-dimensional semiconductor nanostructures in a strong perpendicular magnetic field are derived by truncating at the $n=1$ Landau level, and using the symmetry of the system and a group-theoretical analysis. We find that the nonlinear optical response depends crucially on asymmetries between particle-particle and particle-hole Coulomb interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.