Abstract
This paper considers multiple scattering of waves propagating in a non-lossy one-dimensional random medium with short- or long-range correlations. Using stochastic homogenization theory it is possible to show that pulse propagation is described by an effective deterministic fractional wave equation, which corresponds to an effective medium with a frequency-dependent attenuation that obeys a power law with an exponent between 0 and 2. The exponent is related to the Hurst parameter of the medium, which is a characteristic parameter of the correlation properties of the fluctuations of the random medium. Moreover the frequency-dependent attenuation is associated with a special frequency-dependent phase, which ensures that causality and Kramers-Kronig relations are satisfied. In the time domain the effective wave equation has the form of a linear integro-differential equation with a fractional derivative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.