Abstract

This paper presents an improved variant of particle swarm optimization (MPSO) algorithm for the form error evaluation, from a set of coordinate measurement data points. In classical particle swarm optimization (PSO), new solution is updated by the existing one without really comparing which one is better. This behaviour is considered to be caused by lack in exploitation ability in the search space. The proposed algorithm generates new swarm position and fitness solution employing an improved and modified search equation. In this step, the swarm searches in proximity of the best solution of previous iteration to improve the exploitation behaviour. The particle swarm employs greedy selection procedure to choose the best candidate solution. A non-linear minimum zone objective function is formulated mathematically for each form error and consequently optimized using proposed MPSO algorithm. Five benchmark functions are used to prove the efficiency of the proposed MPSO algorithm, by comparing the proposed algorithm with established PSO and genetic algorithm. Finally, the results of the proposed MPSO algorithm are compared with previous literature and with other nature inspired algorithms on the same problem. The results validate that proposed MPSO algorithm is more efficient and accurate as compared to other conventional methods and is well suited for effective form error evaluation using CMMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call