Abstract

A novel numerical method is proposed for the solution of transient multi-physics problems involving heat conduction, electrical current sharing and Joule heating. The innovation consists of a mesh-free Monte Carlo approach that eliminates or drastically reduces the particle scattering requirements typical of conventional Monte-Carlo methods. The proposed algorithm encapsulates a volume around each point that affects the solution at a given point in the domain; the volume includes other points that represent small perturbations along the path of energy transfer. The proposed method is highly parallelizable and amenable for GPU computing, and its computational performance was substantially increased by the elimination of scattered interpolation. The accuracy and simulation time of the proposed method are compared against a finite element solution and also against experimental results from existing literature. The proposed method provides accuracy comparable to that of finite element methods, achieving an order of magnitude reduction in simulation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.