Abstract
In this work, we investigate the effectiveness of a damage identification technique recently proposed in [1] and assess how it is affected by the number and position of the sensors used. Mode shapes and curvatures have been claimed to contain local information on damage and to be less sensitive to environmental variables than natural frequencies. It is known that notch-type damage produces a localized and sharp change in the curvature that unfortunately could be difficult to detect experimentally without the use of an adequate number of sensors. However, we have recently shown that even a coarse description of the modal curvature can still be employed to identify the damage, provided that it is used in combination with other modal quantities. Here, by exploiting the perturbative solution of the Euler-Bernoulli equation, we consider the inverse problem of damage localisation based on modal curvatures only and we ascertain the feasibility of their sole use for recostructing the damage shape. To do so, we set up a filtering procedure acting on modal curvatures which are expressed in a discrete form enabling further investigation on the effect of using a reduced number of measurement points. The sensitivity of the procedure to damage extension is further assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.