Abstract

We present the dynamical phase diagrams of the kinetic Blume–Capel model with random diluted single-ion anisotropy in a square lattice under the presence of a time-varying (oscillating) external magnetic field calculated by an analytical method, the effective-field theory (EFT). The kinetics is modeled with the formalism of a master equation. The time-averaged magnetization (M) acts as the order parameter and divides the temperature–field plane into three regions: ferromagnetic, paramagnetic, and coexistence of ferromagnetic and paramagnetic phases. In addition, the hysteresis loop area and the dynamic correlation function are calculated. It is observed that the inclusion of spin–spin correlations suppress the first-order transition lines and dynamical tricritical points for all values of the crystal-field concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.