Abstract

Motivated by the observation of the fractional quantum Hall effect in graphene, we consider the effective field theory of relativistic quantum Hall states. We find that, beside the Chern-Simons term, the effective action also contains a term of topological nature, which couples the electromagnetic field with a topologically conserved current of $2+1$ dimensional relativistic fluid. In contrast to the Chern-Simons term, the new term involves the spacetime metric in a nontrivial way. We extract the predictions of the effective theory for linear electromagnetic and gravitational responses. For fractional quantum Hall states at the zeroth Landau level, additional holomorphic constraints allow one to express the results in terms of two dimensionless constants of topological nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.