Abstract

We study the Effective Field Theory of Large Scale Structure for cosmic density and momentum fields. We show that the finite part of the two-loop calculation and its counterterms introduce an apparent scale dependence for the leading order parameter $c_\text{s}^2$ of the EFT starting at k=0.1 h/Mpc. These terms limit the range over which one can trust the one-loop EFT calculation at the 1 % level to k<0.1 h/Mpc at redshift z=0. We construct a well motivated one parameter ansatz to fix the relative size of the one- and two-loop counterterms using their high-k sensitivity. Although this one parameter model is a very restrictive choice for the counterterms, it explains the apparent scale dependence of $c_\text{s}^2$ seen in simulations. It is also able to capture the scale dependence of the density power spectrum up to k$\approx$ 0.3 h/Mpc at the 1 % level at redshift $z=0$. Considering a simple scheme for the resummation of large scale motions, we find that the two loop calculation reduces the need for this IR-resummation at k<0.2 h/Mpc. Finally, we extend our calculation to momentum statistics and show that the same one parameter model can also describe density-momentum and momentum-momentum statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.