Abstract
Employing the Foldy–Wouthuysen transformation, it is demonstrated straightforwardly that the first and second Chern numbers are equal to the coefficients of the 2+1 and 4+1 dimensional Chern–Simons actions which are generated by the massive Dirac fermions coupled to the Abelian gauge fields. A topological insulator model in 2+1 dimensions is discussed and by means of a dimensional reduction approach the 1+1 dimensional descendant of the 2+1 dimensional Chern–Simons theory is presented. Field strength of the Berry gauge field corresponding to the 4+1 dimensional Dirac theory is explicitly derived through the Foldy–Wouthuysen transformation. Acquainted with it, the second Chern numbers are calculated for specific choices of the integration domain. A method is proposed to obtain 3+1 and 2+1 dimensional descendants of the effective field theory of the 4+1 dimensional time reversal invariant topological insulator theory. Inspired by the spin Hall effect in graphene, a hypothetical model of the time reversal invariant spin Hall insulator in 3+1 dimensions is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.