Abstract

Theoretical data obtained from physically sensible field and string theory models suggest that gravitational Effective Field Theories (EFTs) live on islands that are tiny compared to current general bounds determined from unitarity, causality, crossing symmetry, and a good high-energy behavior. In this work, we present explicit perturbative and nonperturbative 2 → 2 graviton scattering amplitudes and their associated low-energy expansion in spacetime dimensions D ≥ 4 to support this notion. Our new results include a first example of gravity weakly coupled to a nonperturbative effective action. We show that, at energies below the mass of its nonperturbative matter, the D = 4, mathcal{N} = 1 supersymmetric field theory in the confined phase lies on the same islands identified using four-dimensional perturbative models based on string theory and minimally-coupled matter circulating a loop. Furthermore, we generalize the previous four-dimensional perturbative models based on string theory and minimally-coupled massive spin-0 and spin-1 states circulating in the loop to D dimensions. Remarkably, we again find that the low-energy EFT coefficients lie on small islands. These results offer a useful guide towards constraining possible extensions of Einstein gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.