Abstract

Using an approach based on Soft Collinear Effective Theory (SCET) and Heavy Quark Effective Theory (HQET) we determine the $b$-quark fragmentation function from electron-positron annihilation data at the $Z$-boson peak at next-to-next-to leading order, with next-to-next-to leading log resummation of DGLAP logarithms, and next-to-next-to-next-to leading log resummation of endpoint logarithms. This analysis improves, by one order, the previous extraction of the $b$-quark fragmentation function. We find that while the addition of the next order in the calculation does not much shift the extracted form of the fragmentation function, it does reduce theoretical errors indicating that the expansion is converging. Using an approach based on effective field theory allows us to systematically control theoretical errors. While the fits of theory to data are generally good, the fits seem to be hinting that higher order correction from HQET may be needed to explain the $b$-quark fragmentation function at smaller values of momentum fraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call