Abstract
Since the discovery of the quantum Hall effect in the 1980s it has been clear that there exists states of matter characterized by subtle quantum mechanical effects that renders certain properties surprisingly stable against dirt and noise. The theoretical understanding of these topological quantum phases have continued to develop during the last few decades and it has really surged after the discovery of the time-reversal invariant topological insulators. There are many examples of topological phases that have been important for the theoretical understanding of topological states of matter as well as being of great physical relevance. In this chapter we will focus on some examples that we find particularly enlightening and relevant, but we will not make a complete classification. Some of the most important tools for the understanding of topological quantum matter are based on effective field theory methods. We shall employ two different types of effective field theories. The first, which is valid at intermediate length and time-scales, will not capture the physics at microscopic scales. Such theories are the analogs, for topological phases, of the Ginzburg–Landau theories used to describe the usual symmetry breaking non-topological phases. The second type of theories describe the physics on scales where non-topological gapped states would be very boring, namely at distances and times much larger than the correlation length and the time set by the inverse gap. On these scales everything is independent of any distance and the theories will be topological field theories, which do not describe any dynamics in the bulk, but do carry information about topological properties of the excitations, and also about excitations at the boundaries of the system. Finally, we will also study effective response actions. In a strict sense these are not effective theories, since they do not have any dynamical content, but encode the response of the system to external perturbations, typically an electromagnetic field. As we shall see, however, the effective response action for topological states can be used to extract parts of the dynamic theory through a method called functional bosonization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.