Abstract

Optimising compilers rely on profiling to identify the target regions for optimising the input programme. Although profiling is accurate, it incurs a lot of overhead, an obstacle to achieving considerable performance improvement. Alternatively, machine learning-based offline prediction of hot methods that form vital target segments, is bound to eliminate the runtime overhead. In this work, we develop and implement support vector machines-based hot method prediction models trained on effective static programme features generated by a new 'knock-out' algorithm. When trained using low level virtual machine (LLVM) environment, it is possible to predict the frequently called and the long running hot methods with 61% and 68% accuracy. Selective optimisation of the predicted hot methods before programme execution provides substantial performance improvement over default LLVM optimisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.