Abstract

Falls detection systems have been developed in recent years because falls are detrimental events that can have a devastating effect on health of the elderly population. Current fall detecting methods mainly employ accelerometer to discriminate falls from activities of daily living (ADL). However, this makes it difficult to distinguish real falls from certain fall-like activities such as jogging and jumping. In this paper, an accurate fall detection system was implemented using two tri-axial accelerometers. By attaching the accelerometers on the chest and the abdomen, our system can effectively differentiate between falls and non-fall events.The Diff_Z and Sum_diff_Z parameter resulted in falls detection rate of 100%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.