Abstract

Existing low-cost Doppler radar-based fall detection systems encounter challenges due to false alarms and the absence of post-fall health tracking, significantly impacting their accuracy and overall compatibility for fall detection. This paper presents a cost-effective, robust solution for a fall detection system with the post-fall health tracking facility using a 3.18 GHz continuous-wave Doppler radar sensor. The experimental data acquisition is conducted in-house under the guidance of a healthcare expert, involving various activities such as standing, sitting, sleeping, running, walking, falling, sit-to-stand, and stand-to-sit transitions. We propose an algorithm comprising four hierarchical stages, each with specific objectives. Considering the complexity, the model is trained differently for each stage to optimize the classification accuracy. The system architecture is designed to minimize computational costs and power consumption through modular implementation in stages, utilizing low-power equipment and incorporating traditional machine-learning algorithms. Experimental results demonstrate a fall detection accuracy of 93.24% and breath rate measurement error of 2.26%, which is competitive with recent state-of-the-art approaches. Obtained results highlight the effectiveness of the proposed system in addressing the challenges of false alarms and post-fall health tracking while maintaining cost-efficiency and accuracy in fall detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call