Abstract
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However, most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme (SNG). In contrast with routine N-doped graphene framework (NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm−1, a large surface area of 1531 m2 g−1, a low defect density with a low ID/IG ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 °C in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.