Abstract
This paper focuses on the parameter estimation for the d-variate Farlie–Gumbel–Morgenstern (FGM) copula (dge 2), which has 2^d-d-1 dependence parameters to be estimated; therefore, maximum likelihood estimation is not practical for a large d from the viewpoint of computational complexity. Besides, the restriction for the FGM copula’s parameters becomes increasingly complex as d becomes large, which makes parameter estimation difficult. We propose an effective estimation algorithm for the d-variate FGM copula by using the method of inference functions for margins under the restriction of the parameters. We then discuss its asymptotic normality as well as its performance determined through simulation studies. The proposed method is also applied to real data analysis of bearing reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.