Abstract

To maximize the efficiency of biomass waste utilization and waste management, a novel acid-modified magnetic biomass spent coffee grounds (NiFe2O4/SCG) was obtained by pyrolysis at 473K and co-precipitation methods and employed to eliminate bivalent mercury (Hg(II)) in water bodies. The prepared NiFe2O4/SCG adsorbent exhibits remarkable magnetism with a strength of 45.78emu/g and can easily be separated from water via a magnetic force. The adsorption of Hg(II) over the NiFe2O4/SCG has an optimal conditions of pH = 8, T = 39 ℃, and dosage of 0.055 g/L, and the maximal adsorption capacity for Hg(II) is 167.44 mg/g via Response Surface Methodology optimization. The removal of Hg(II) over NiFe2O4/SCG primarily involves ion exchange, electrostatic attraction, and chelation; conforms to the pseudo-second-order kinetic and Langmuir models; and is an endothermic reaction. Additionally, the magnetic biomass NiFe2O4/SCG has good regeneration capability and stability. The application research reveal that inorganic salt ions, nitrogen fertilizer urea, humus, and other contaminants in different actual water bodies (river water, lake water, and the effluent of sewage treatment plant) have little effect on the adsorption of Hg(II) over the NiFe2O4/SCG. The prepared adsorbent NiFe2O4/SCG has practical application value for removing Hg(II) from water bodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.