Abstract

Zealandia was once located at the active Gondwana margin and experienced complicated tectonic evolution from continental breakup to subduction and oblique slipping along the plate boundary. Here, we investigate the lithospheric thermal and rheological properties via spatial variations in effective elastic thickness (Te). Using the topography, sediment thickness and gravity data, the fan wavelet coherence method is employed to recover Te values. The effects of dynamic topography and gravity in the subduction zone on the estimated Te are considered and removed. The final results reveal that the Te variation pattern generally coincides well with the tectonic regimes. Relatively high Te values up to 22 km are observed in North Island and the southernmost part of South Island, while central and northern South Island are dominated by smaller Te values (~15 km) similar to those of the surrounding submerged plateaus. We interpret the relatively high Te values as indicating the combined lithospheric strength due to the contacting plates in the subduction zone. To the north along the Tonga-Kermadec subduction zone, the lithosphere surprisingly exhibits anomalously high Te values, ranging from 22 to 36 km, which contradicts the geological evidence of normal faults developed in the incoming Pacific Plate and the magmatism in the overlying Australian Plate that generally contribute to low lithospheric strength. We speculate that the high-Te zone is related to the large bathymetry and gravity anomalies in the bending plate and controlled by non-isostatic factors. Finally, we find widespread low Te values covering the entire arcs and oceanic basins in northern Zealandia, which may indicate that regional lithospheric thinning associated with delamination weakened the integrated strength of the lithosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call