Abstract
A method is developed for the analysis of the effective properties of porous nonlinear elastic materials with randomly distributed interacting pores under finite deformations. The method is based on the solution of the problems of nonlinear elasticity for a representative region using Signorini’s expansion. The constitutive equations for the matrix material and for the comparison material are written in a form corresponding to Murnaghan’s potential. The technique, which is used for ensemble averaging, approximately simulates the uniform distribution of pores. The computations are performed for plane strain, when pores are equal in size, and a circular cylindrical shape in the undeformed state is assumed. [S0021-8936(00)01802-X]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.