Abstract

A combination of microelasticity, phase-field description of grain structures, and first-principles calculations is proposed to predict the effective elastic properties of polycrystals. As an example, using the single crystal elastic constants from first-principles calculations and a polycrystalline microstructure from a phase-field simulation as inputs, the effective elastic moduli of polycrystalline magnesium are obtained as a function of temperature and compared with available experimental measurements. The texture effect on the effective elastic moduli is also examined. The proposed integrated model will make it possible to model not only the temporal evolution of microstructures but also the temporal evolution of properties using the phase-field method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.