Abstract

Due to the limited control bandwidth of pneumatic artificial muscles, joint stiffness characteristics and their effects on safety and performance of human-friendly robots should be considered in the frequency domain. This paper introduces the concept of effective dynamic stiffness and validates its model with the Stanford Safety Robot. Experimental results show that the dynamic stiffness demonstrates limited effects on the impact acceleration given the same impact velocity and controller gain, whereas it significantly affects control performance of position tracking due to pressure-induced non-linearities. A stiffness optimization strategy for safety and performance is discussed as a design guideline of human-friendly robots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call