Abstract

In the study, a retrieval approach is extended to determine the effective dynamic properties of a finite multilayered acoustic metamaterial based on the theoretical reflection and transmission analysis. The accuracy of the method is verified through a comparison of wave dispersion curve predictions from the homogeneous effective medium and the exact solution. A multiresonant design is then suggested for the desirable multiple wave band gaps by using a finite acoustic metamaterial slab. Finally, the band gap behavior and kinetic energy transfer mechanism in a multilayered composite with a periodic microstructure are studied to demonstrate the difference between the Bragg scattering mechanism and the locally resonant mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call