Abstract

The purpose of this study was to determine the range of effective doses associated with imaging techniques used during interventional radiology procedures on children. A pediatric phantom set (1, 5, and 10 years) coupled with high-sensitivity metal oxide semiconductor field effect transistor (MOSFET) dosimeters was used to calculate effective doses. Twenty MOSFETs were inserted into each phantom at radiosensitive organ locations. The phantoms were exposed to mock head, chest, and abdominal interventional radiology procedures performed with different geometries and magnifications. Fluoroscopy, digital subtraction angiography (DSA), and spin angiography were simulated on each phantom. Road mapping was conducted only on the 5-year-old phantom. International Commission on Radiological Protection publication 103 tissue weights were applied to the organ doses recorded with the MOSFETs to determine effective dose. For easy application to clinical cases, doses were normalized per minute of fluoroscopy and per 10 frames of DSA or spin angiography. Effective doses from DSA, angiography, and fluoroscopy were higher for younger ages because of magnification use and were largest for abdominal procedures. DSA of the head, chest, and abdomen (normalized per 10 frames) imparted doses 2-3 times as high as corresponding doses per minute of fluoroscopy while all other factors remained unchanged (age, projection, collimation, magnification). Three to five frames of DSA imparted an effective dose equal to doses from 1 minute of fluoroscopy. Doses from spin angiography were almost one-half the doses received from an equivalent number of frames of DSA. Patient effective doses during interventional procedures vary substantially depending on procedure type but tend to be higher because of magnification use in younger children and higher in the abdomen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.