Abstract

The objective of this study was to perform effective dose estimation in cone-beam CT for dental use (CBCT) using a Monte-Carlo simulation employing a step-and-shoot method as well as to determine the optimal number of steps. We simulated 3DX Accuitomo FPD8 as a CBCT model and estimated the effective doses of a large and a small field of view (FOV) examination against the virtual Rando phantom using a particle and heavy ion transport code system. We confirmed the results compared to those from a thermo-luminescence dosemeter (TLD) system in a real phantom and investigated how the reduced angle calculations could be accepted. The effective doses of both FOVs estimated with each one degree were almost the same as those estimated from the TLD measurements. Considering the effective doses and the itemized organ doses, simulation with 5° and 10° is acceptable for the large and small FOV, respectively. We tried to compare an effective dose with a large FOV as well as with multiple small FOVs covering the corresponding area and found that the effective dose from six small FOVs was approximately 1.2 times higher than that of the large FOVs. We successfully performed a Monte-Carlo simulation using a step-and-shoot method and estimated the effective dose in CBCT. Our findings indicate that simulation with 5° or 10° is acceptable based on the FOV size, while a small multiple FOV scan is recommended from a radiation protection viewpoint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.