Abstract

Renal imaging (scintigraphy, intravenous urography (IVU) and computed tomography urography (CTU)) are non-invasive procedures that provide information essential in the diagnosis and treatment of renal disorders. The importance of these procedures notwithstanding, radiation exposure to the different tissues and organs could result in diverse reaction possibilities of varying severity. Accordingly, patient dose measurement of such exposures represent an essential step in seeking radiation dose optimization. Present study seeks to quantify effective doses for paediatric patients undergoing renal scintigraphy, IVU and CTU procedures using technetium-99m-diethylene-triamine-pentaacetic acid. Patients population consist of 116 patients (68 boys and 48 girls) were investigated using an Orbiter 37 single-head gamma camera, a digital imaging system and a dual-slice CT detector unit. Patient effective doses were estimated, administered activity ranging between 37.0 and 129.5 MBq per procedure. The mean effective dose and range (in mSv) for renal scintigraphy, CT Urography and IVU procedures were 1.0, 0.98 and 0.6 mSv per procedure respectively. The associated radiation risk estimates per procedure range between 80 and 130 cancers per one million procedures. Patients undergoing renal scintigraphy and CTU procedures received comparable doses such that if CT parameters are optimized this then allows the referring physician to consider the best diagnostic outcome regardless of modality selected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.