Abstract
ABSTRACTWe study the effect of surface adsorption of 27 different adatoms on the electronic and magnetic properties of monolayer black phosphorus using density functional theory. Choosing a few representative elements from each group, ranging from alkali metals (group I) to halogens (group VII), we calculate the band structure, density of states, magnetic moment and effective mass for the energetically most stable location of the adatom on monolayer phosphorene. We predict that group I metals (Li, Na, K), and group III adatoms (Al, Ga, In) are effective in enhancing the n-type mobile carrier density, with group III adatoms resulting in lower effective mass of the electrons, and thus higher mobilities. Furthermore, we find that the adatoms of transition metals Ti and Fe produce a finite magnetic moment (1.87 and 2.31 μB) in monolayer phosphorene, with different band gap and electronic effective masses (and thus mobilities), which approximately differ by a factor of 10 for spin-up and spin-down electrons, opening up the possibility for exploring spintronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.