Abstract
Robustness analysis research has shown that conventional memory-based recommender systems are very susceptible to malicious profile-injection attacks. A number of attack models have been proposed and studied and recent work has suggested that model-based collaborative filtering (CF) algorithms have greater robustness against these attacks. Moreover, to combat such attacks, several attack detection algorithms have been proposed. One that has shown high detection accuracy is based on using principal component analysis (PCA) to cluster attack profiles on the basis that such profiles are highly correlated. In this paper, we argue that the robustness observed in model-based algorithms is due to the fact that the proposed attacks have not targeted the specific vulnerabilities of these algorithms. We discuss how an effective attack targeting model-based algorithms that employ profile clustering can be designed. It transpires that the attack profiles employed in this attack, exhibit low rather than high pair-wise similarities and can easily be obfuscated to avoid PCA-based detection, while remaining effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.